Exercises

Solving Linear Equations

Exercise 1. Solve the following systems of linear equations.
(a)

$$
\begin{aligned}
x_{1}+2 x_{2}=8 & \text { (b) } \left.\begin{array}{rl}
2 x_{1}+4 x_{2}=17 \\
x_{1}+2 x_{2} & =8 \\
4 x_{1}+3 x_{2} & =17 \\
&
\end{array}\right) \\
-3 x_{1}+x_{2}-2 x_{3} & =4 \\
-6 x_{1}+2 x_{2}-4 x_{3} & =8 \\
-15 x_{1}+5 x_{2}-10 x_{3} & =20
\end{aligned} \text { (d) } \begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}=0 \\
& 4 x_{1}+5 x_{2}+6 x_{3}=3 \\
& 7 x_{1}+8 x_{2}+9 x_{3}=6
\end{aligned}
$$

Exercise 2. Compute the inverse A^{-1} of the following matrix.

$$
A=\left(\begin{array}{rrr}
2 & -2 & 1 \\
-1 & 1 & 0 \\
2 & 1 & -2
\end{array}\right)
$$

Exercise 3. Check if the following vectors are linear independent.
(a) $v_{1}^{\top}=(1,2), \quad v_{2}^{\top}=(-1,-2)$
(b) $v_{1}^{\top}=(1,3,0,2), \quad v_{2}^{\top}=(3,9,2,8), \quad v_{3}^{\top}=(5,10,7,12)$

Exercise 4. Solve the system of linear equations

$$
\begin{aligned}
2 x-a y+z & =2 \\
x+2 y-z & =b
\end{aligned}
$$

where $a, b \in \mathbb{R}$ are some constants.
Exercise 5. Compute the inverse X^{-1} of the matrix

$$
X=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where $a, b, c, d \in \mathbb{R}$ with $a d \neq b c$. You may further assume without loss of generality that $a \neq 0$.

Exercise 6. Consider the following system of linear equations

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =2 q \\
2 x_{1}-3 x_{2}+2 x_{3} & =4 q \\
3 x_{1}-2 x_{2}+p x_{3} & =q
\end{aligned}
$$

where p and q are parameters. For which values of p, q is there
(i) an unique solution,
(ii) no solution,
(iii) infinitely many solutions?

